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SUMMARY OF SCIENTIFIC PROGRESS TO DATE

Here brief summaries are given for topics where significant progress
has been achieved, but where as yet no papers have been prepared for
publication.

1. Non-Linear Theory (I. B. Bernstein and L. Friedland)

The non-linear theory of a steady state free electron laser amplifier
consisting of a relativistic electron beam in helical pump and axial con-
fining magnetic fields illuminated by monochromatic radiation has been form-
ulated. The introduction of Lagrangian variables permits an exact integra-
tion of the continuity equation to express the current density at a general
field point in terms of the current density at injection and the velocity at
the field point in question. The axial electric field is found in a similar
way by integrating Poisson's equation. The parallel momentum equation is
reduced to an ordinary differential equation and permits the electron orbits
to turn in the wave frame, corresponding as one advances along the beam in
the direction of propagation to the development of multistreaming. The
reduced equations, and the coupled wave equations for the transverse vector
potential are being analyzed, and suitable numerical methods for their solu-
tion are being determined. Preliminary numerical studies have begun.

2. Quasi-Linear Theory (I. B. Bernstein and L. Friedland)

A quasi-linear theory of the steady free electron laser amplifier con-
sisting of a helical pump and relativistic electron beam illuminated by a
monochromatic wave has been formulated. A linearized WKB description is
employed to describe the electromagnetic field, and the steady state density,
mean velocity, etc. are determined correct to second order in the high fre-
quency amplitude. The helical pitch is allowed to vary with position so as
to keep the system in a configuration of maximum gain as the beam deceller-
ates on converting its energy into radiation. The analysis of the results
is continuing, numerical studies are underway, and a preliminary manuscript
has been prepared.

3. Exact Magnetic Fields of a Bifilar Helix (S. Y. Park, R. A. Smith, and
J. L. Hirshfield)

The static magnetic field of a bifilar helix has been derived exactly.
The components B1 , B2, and B3 have each been determined as functions of r,
and e-kz, where 2n/k is the period of the double helix, and where (el, 92,
43) is the basis vector set dictated by helix symmetry. In usual FEL theory
B1 = B3 = 0, and B2 - const. The theory developed here gives, for a helix
of specified radius and period, the radial beam positions for which the
usual assumption is valid. Higher order multi-pole fields are significant
off axis, where annular beams are commonly placed.

4. Non-Helical Orbits in a Free Electron Laser (S. Y. Park, R. A. Smith and
J. L. Hirshfield)

An exact analytic solution has been found for the orbit of a charged
particle moving in the combined magnetic field of a bifilar helical wiggler
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and a uniform solenoid. The axial velocity is shown to satisfy an anharmonic
oscillator equation whose solutions are Jacobian elliptic functions. Other
velocity components are readily determined from the axial velocity. Solu-
tions are classified according to the type of Jacobian elliptic function,
which in turn is determined by magnetic field parameters and initial particle
conditions. This exact solution is to be used to calculate the spectrum of
single-particle spontaneous emission; significant emission at harmonic wave-
lengths is indicated.

5. Electron Beam Analyzer (P. Avivi, F. Dothan, A. Fruchtman, and J. L.
Hirshfield)

Electromagnetic gain in a FEL is a sensitive function of the momentum
distribution of the beam electrons. The physical mechanism which dominates
the gain process may even change as one goes from a "cold" beam to a beam
with a finite skewed spread in momentum. It is thus crucial to measure the
momentum distribution of the electron beam in a FEL in order to interpret
the results. With this in mind we have designed a 900 magnetic deflection
analyzer which is capable of determining average electron momentum and rela-
tive distribution of momentum, for a small sample of the beam. At a deflec-
tion angle of 900 the analyzer's dispersion is a maximum; momentum resolu-
tion of 0.1% appears possible. This analyzer is now under construction, in
two stages. In the first stage, about to be installed, the analyzer responds
in a single channel (i.e., in a single momentum bin) on each accelerator
shot. In the second stage, a multichannel collector and readout will be
possible on each shot.

6. Operation of Febetron Accelerator (A. Ljudmirsky, J. Smulovits, F. Dothan,
H. Sharon, and J. L. Hirshfield)

The ', 400 keV Febetron accelerator has been successfully operated in
the magnetic field and vacuum tank in which the free electron laser experi-
ments are to be conducted. The manufacturer's Blumlein pulse line has been
removed so that the 50 nsec Marks bank is terminated directly by the foil-
less field emission diode. Diode impedance is adjusted, both empirically
and with the guidance of the NRL experience, by shaping the cathode stem
and the anode geometry. Stable beams in the current range 100-1000 A have
been successfully generated and launched along the full axis of the combined
guide and wiggler magnetic fields of the device. Electromagnetic radiation
and gain measurements at 35 GHz are about to begin.
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Free-Electron Laser with a Strong Axial Magnetic Field

L. Friedland and J. L. Hirshfield

Department of Engineenng and Applied Science, Mason Laboratory.
Yale University. New Haven. Connecticut 06520

(Received 27 February 1980)

A small-signal theory is given for gain in a free-electron laser comprising a cold
relativistic electron beam in a helical periodic transverse, and a strong uniform axial,
magnetic field. Exact finite-amplitude, steady-state helical orbits are included. If
perturbed, these orbits oscillate about equilibrium, so that substantial gain enhancement
can occur if the electromagnetI perturbations resonate with these oscillations. This
gain enhancement need not be at thi cost of frequency upshift.

PACS numbers: 42.55.-f, 41.701.-t, 41.80.Dd

Intensive activity is underway to exploit the known result for Go in the single-particle limit
gain properties of a relativistic electron beam (i.e., when collective effects are negligible)
undulating in a periodic transversc magnetic field. Go = ( , 4/koc)a(kL/2y)3F'(e). (1)
Such free-electron laser (FEL) configurations
have provided oscillation at 3.4 (Ref. 1) and 400 Here wp and y are the be-am plasma frequency

m,2 and amplification at 10.6 m.3 Theory has Ne2 /mE, and normalized energy W/mc 2 , k o and
advanced apace, 4 and elaborate schemes have are the heitcal transverse magnetic field wave
been proposed for obtaining high FEL efficiency.- number 2n/I and normalized strength eBj2mcko,
A factor which limits the practical application of L is the interaction length, and F'(8) = (d/de)(sine/
this interaction at wavelengths shorter than per- 0) 2 is the line-shape factor, with 9 'k[V 30 - W (1

haps a few microns is the rapid decrease in - voi/c)] (L/2c), where V 30 is the unperturbed elec-
small-signal gain G, as the electron energy in- tron axial velocity. The peak gain occurs at 0
creases. This is shown explicitly in the well- .1.3, where F'(9) = 0.54. For example, withy
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=10, 1=1.05 cm, w,=5x101 sec" , 4 =1 (B.=10.2 netic field
kG), and L =130 cm, the peak gain is Go, =0.002 47 '(r) =Bog, +B.( coskoz +g sinkz). (2)
at a wavelength of 105 kA m. For y =100, 1 =10.5
cm, W, = 2 x 101 sec- 1, 4 = 1 (B . = 1.02 kG), and L These orbits, which have been the subject of re-
=260 cm, the peak gain is Gap =0.003 16 at a wave- cent study, 0 can possess more than one steady
length of 10.5 ;m. These gain values may be state, depending upon y, B0 , B,, and k,. These
large enough to sustain oscillations if highly re- steady states are characterized by the normalized
flecting mirrors are judiciously added but the velocity components (i.e., ui =vj/c)
strong helical fields required (particularly the U

10.2-kG case) may be beyond the capability of (0) = 0 =ko4z 3o/(kou3 oy - £2/c),
present superconducting coil technology. 7  (3)

A suggestion has appeared for enhancing the u30 = (1 - U20 - y, 2)1/2,

small-signal gain above values given by Eq. (1) where the basis vectors i,(z) - gsirhkz +g,
(or for achieving comparable gains with smaller xcosk1z, (z) =-gcoskoz -isinkz, and a3 (z)
BJ by employing a strong axial magnetic field so =9, have been introduced to track the symmetry
as to exploit resonance between the cyclotron fre- of the transverse magnetic field. Figure 1 shows
quency and the undulatory frequency. 8 The pres- u3, vs n//c for k, = 6.0 cm" , J = 1.0, and - = 10.
ent Letter presents a single-particle derivation For n2 >na mkoC[(y2- 1)1 / 

-3 2/313/2, it is seen
for the small-signal gain of a FEL in a uniform that only one branch exists (branch C). But for
axial magnetic field Bo. We shall demonstrate 12 < n,, two additional branches (A and B) are al-
that careful adjustment of the system parameters lowed: Branch B has been shown to be unstable,
will allow enhancement of the FEL small-signal in that the orbits exhibit nonhelical, highly an-
gain by an order of magnitude or more (for the harmonic motions, while branches A and C have
above examples) without increasing the undulatory orderly helical orbits. Stability is insured if A

2

velocity. This result goes beyond that predicted -a2 -bd > 0, where a =kocu 3 0 /yU 20 , b =£uo/yu..,
by Sprangle and Granatsteing who have suggested and d =koc4/y. The quantity M is the natural res-
that the only effect of the axial magnetic field onance frequency in response to small perturba-
would be to add a multiplicative factor (1 - n/ tions of the orbit: We shall show that strong res-
kocy)" to Eq. (1), due to the aforementioned res- onance response of the electrons to electromag-
onance giving an enhanced undulatory velocity v., netic perturbation can lead to enhanced FEL gain
where C2 =eBo/m. This result is in fact predicted for small M, i.e., for 0 close to nc,.
by our analysis as a limiting case. Of course, The derivation of FEL gain proceeds by solving
any mechanism which increases the undulatory the single-particle equations of motion, subject
velocity .,= would increase the gain, but this to weak electromagnetic perturbing fields E
would also reduce the relativistic frequency up- =9'Eo cos(kz - wat) and B =g,(kc/w)E o cos(kz - wt),
shift, since

w kc(1 - v3 0 /c)' I = 2y2koc(1 +, 2 v ±./c)" 0

If, for example, yvv/c =1 without the axial mag- 0.8
netic field, then a given gain enhancement 17 U30  B
achieved through this resonance alone would re- 0.6
sult in a reduction in frequency upshift by a fac-
tor (1 +77)/2. The process we describe in this 0.4

Letter will be shown to permit significant gain
enhancement without undue sacrifice in frequency 0.2/

upshift. The gain enhancement originates when 0
the electromagnetic perturbations resonate with 0 20 40 60 80 100
the natural frequency of oscillation of electrons al/c (cm "1 )
on finite amplitude equilibrium helical orbits. FIG. 1. Steady-state normalized axial velocity u 70
Prior workers have not considered this effect. as a function of normalized axial magnetic field Wc.

A full derivation of our result will be presented For this example k0 = 6.0 cm- 1, 4 = 1.0, and v = 10.
elsewhere.9 Exact unperturbed relativistic orbits Gain enhancement discussed in this work is for orbits
are considered in the customary FEL model mag- on either branch A or branch C.
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about the equilibrium orbits on either branch A or C as discussed above. These equations are

-- (kIcu3) -f/Y)"U - -/v)"2 i(eE2/mcy)(kCU3 /W -1), (5)

&,- .(k l'g/y)u, +(kc/w -u,)6/y), (6)

where =- (e/mc)(uE, .uE 2) and

2(E 2 +iE,) u.E~ejip(i[(k0 +k)U3Ct -wt +sall

with a the random initial electron phase. When time variations and electromagnetic fields are absent,

Eqs. (4)-(6) lead to the exact steady states given by Eq. (3). To linearize Eqs. (4)-(6), we introduce
the velocity perturbations w, =u, -ujo cujo and retain only the lowest-order quantities. This results in
Bu +j&2W -AEocos(8t +a), or

W,= AE 2 [cos(8t +a) - cost cosa + (8/) sint sina ] + " t (0) sint, (7)

where

A -(a 0)(1 -u 0 )+bU21, O =c(k +ko)uo--w, w k (O)=(eE/2ymc)(l -vU) sina,

and w1 (0) =0. The other components follow from

k2 =-aw, +(eE 0 /2mcy)(1 -uo-u 2 12) cos(Ot .a), W2(0) 0; (8)

and

l 3 =dw + (eE0 /2mcv)u 20 (1 -ulo) cos(St +a), w 3 (0) =0. (9)

Equation (7) for w, exhibits the aforementioned natural resonance at frequency k. while the electromag-
netic perturbation drives the transverse motion at frequency 3. Gain enhancement can be expected
when A is close toft.

The energy gain for an electron is calculated from (n c/e)d/dt " - wI.E o - wEo- U2oE21. The first-
order variation in electric field E21 originates from small phase variations as u3 changes. Thus this
becomes

(*cle)dy/dt = -E - w 2E 2 0- Eo(k +ko)CU20 sin(8t +a)fot dt'U'3 (t'). (10)

The third term in Eq. (10) is much larger than the other two on account of the factor k +k,. The domi-
nant single-particle energy transfer in the FEL (even with an axial magnetic field) is seen to be by
work ecu2E2 done along the transverse undulatory motion, enhanced by the strong variation in E2 as its
phase varies through w,. The energy variation [Eq. (10)] is averaged over random phase a to give
(dy/dt), which in turn leads to the gain through G =2(COE, 2 )- 1Nmc2fodt(d/dt), where N is the beam
electron density and T -L/c is the total interaction time for the electrons in a system of length L.

The final result is

ley U2\ 1 U302p

+F( +(p) -F(O - v) a r, P( + 0)- P(e - p)](
+ _ I,() 2g (11

where =OT/2, V=uT/2, F()=(sinx/x)2 , and I
P(v) =xF ()/2; and where we have approximated mation we may write
(k +ko)(1-u 30) ko. We shall examine Eq. (11) in G(M )=Z(, 2 /16)kOCU 2

2 'F'(), (12)

several limits.
For 1>, only the terms involving F'(0) and where Z=2+A-2 ta,3 +bd(l -u )'. In the case

P'(0) in Eq. (11) are significant, and on branch where the axial magnetic field is absent, Q = 0,
A the latter of these is smaller than the former A = a = kCOc30 >> 3, and U2 =4/y. Thus, Z 2 and
by at leAs'. a factor 2p. Thus to a good approxi- Eq. (12) goes over to Eq. (1). When n *0 and
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>> 3, gain enhancement can be achieved as claimed o2
by the prior workers, I due to resonant enhance-
ment of u , but not without sacrificing frequency
upshift, as discussed above. 40=1.0

However a more attractive possibility exists IE
when A is small, and approaches 3. Here one z
can approximate Z M-bd(1 - t o) >> 1; this re- 10
sults from resonance between the electromagnetic Z • oos
perturbation which gives oscillatory motion to the "
electron at a frequency 1, close to its natural
oscillation frequency A. Gain enhancement due (a)
to large Z is seen to be possible without simul- I =- 5
taneously increasing u2 o, so that the desirable 10. 3  

10
- 2  lo-

frequency upshift property of the FEL need not 65- =. II
be sacrificed. s o

We define a gain enhancement factor 77= GIG O  60 =. 0-o
to compare two free-electron lasers, identical o
except that one has a strong axial magnetic field, 55 f,=0.5

while the second does not. In the first laser, the 1
transverse magnetic field B , is reduced so that C_,1

U2 1 is the same for both lasers. (This assures , I , , ,
that both enjoy the same frequency upshift.) Then 0 0.01 0.02 0.03 0.04 0.05 0.06

=Z{-(F(e + p) - F(8-- p)J//2qoF'()}. (13) FIG. 2. (a) Gain enhancement J ) and (b) correspond-
ing normalized axial magnetic field £2c, vs transverse

We have evaluated Eq. (13) for two examples with magnetic field parameter 4. The values .) = 0.5 and
the parameters cited in the first paragraph of this 1.0 are for the FE L without axial field, and provide
Letter, holding J b(= 1.3 where iF'(61)i' has its the same u,0 as do the indicated (smaller) values of

maximum value. The results are shown in Fig. 2 4 for the FEL with the indicated axial field strength.
for the V= 10 example. In Fig. 2(a) we plot the Example is for y= 10, k0 = 6.0 cm", and L = 130 cm.

Solid curves, orbits on branch C; dashed curves,gain enhancement factor as a function of the orbits on branch A. For high enhancement values,
transverse magnetic field normalized strength 4 such as on the 40 = 1.0 branch A example, the numeri-
for the FEL with the axial guide magnetic field. cal precision required to compute accurate results
The solid curves are for steady-state orbits on suggests that the phenomenon is very sensitive to the
branch C; the dashed curves for branch A. On system parameters.
branch A, gain occurs for 0 >0, while on branch
C gain occurs for 0 <0. Two transverse magnetic
fields for the FEL without axial field correspond- deserve careful study. However, to the extent
ing to Eo = 1 and 0.5 are shown. Figure 2(b) shows that these effects are negligible, our theory
the required values of axial guide field. One sees shows that provision of a strong uniform axial
a gain enhancement of 31 (on branch C) at 4 = 5 magnetic field can allow significant small-signal
x 0- 3 for an axial guide field of 102 kG. The gain enhancement, and significant reduction in the
transverse magnetic field required is reduced to required transverse magnetic field strength in a
51 G, and the gain is increased to 0.0766 at x FEL, without undue compromise in operating fre-
= 105 gm. Higher gain is predicted on branch A. quency below that given by the idealized upshift
For the y= 100 example at x = 10.5 tim, we find a value 2-y2koc.
gain enhancement of 16 (on branch A) at 4 = 3 X 10- 2  This work was supported in part by the U. S.
for an axial guide field of 99.5 kG. The trans- Office of Naval Research and in part by the U. S.
verse magnetic field required is reduced to 20.6 Air Force Office of Scientific Research.
G, and the gain is increased to 0.0506.

Of course when the predicted single-pass gain
is large (say >0.1) this theory must be modified.
Furthermore, finite electron momentum spread IL. R. EUss, W. M. Fairbank, J. M. J. Madey, H. A.
(neglected here) will mitigate against gain, as Schwettman, and T. I. Smith, Phys. Rev. Lett. 36,
for a FEL without a guide field. These effects 717 (1976).
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2D. B. McDermott, T. C. Marshall, and S. P. Schle- 5P. SprangIe, C.-M. Tang, and W. M. Manhelmer,
singer, Phys. Rev. Lett. 41, 1368 (1978). Phy.. Rev. A 21, 302 (1980).

'D. A. G. Deacon, L. R. Elias, J. M. J. Madey, G. J. 6W. B. Colson, Ph ysics of Quantum Electronics
Ramian, H. A. Schwettman, and T. I. Smith, Phys. (Addison-Wesley, Reading. Mass., 1977), Vol. 5.
Rev. Lett. 38, 892 (1977). 7J. P. Blewett and R. Chasman, J. Appi. Phys. 48,

*i. B. Bernstein and J. L. Hfrshfield, Phys. Rev. 2692 (1977).
Lett. 40, 761 (1978); T. Kwan and J. M. Dawson, Phys. 8P. Sprangle and V. L Granatatein, Phys. Rev. A 17,
Fluids 22, 1089 (1979); 1. B. Bernstein and J. L. 1792 (1978).
Hirshfieldl, Phys. Rev. A 20, 1661 (1979); P. Sprangle 'L Freidland and J. L. Hirshfleld, to be published.
and R. A. Smith, Phys. Rev. A 21, 293 (1980). "0L. Friedland, to be published.
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Electron beam dynamics in combined guide and pump
magnetic fields for free electron laser applications

L Friedland

Department of Computer Science. Yak Univerity, New Haven. Connecticut 06520
(Received 13 December 1979; accepted 21 August 1980)

The propagation of a cold relativistic electron beam in a free electron laser with an axial guide magnetic field
is considered. The possibility of several steady-state helical trajectories for the electrons is shown, and the
stability against perturbations and accessibility of such steady states is considered. Necessary and sufficient
conditions for the stability are derived and indicate the importance of the transition region at the entrance of
the laser. Possible modes of operation of the laser in different steady-state regimes are suggested and
illustrated by numerical examples.

I. INTRODUCTION the theory 4 ,
8 without studying the problem of how the

steady-state situation can be achieved. An additional
The propagation of a relativistic electron beam in complication with the presence of an axial magnetic

transverse periodic magnetic structures has been stu- field is that, as will be shown in Sec. If of this paper,
died extensively in recent years. These studies were in general, there exist several possible steady-state
stimulated ny the first experimentally successful free trajectories for the same values of the axial field and
electron laser' which confirmed the theoretically pre- wiggler parameters, and the question arises as to which
dicted2 possibility of using the energy stored in the of these states is accessible with given inlet conditions
relativistic beam as a source of short wavelength co- of the electron beam. Thus, in the presence of an ax-
herent radiation. ial guide field the initial conditions and the structure

The most frequently used periodic magnetic pump field of the transition region at the entrance of the free elec-
in a free electron laser is the transverse field produced tron laser may be of crucial importance in regard to

the possible modes of operation of the device. These
on the axis of a double helical current winding with equal factors become even more important if the idea of re-
and opposite currents in each helix (a device usually cycling 9 is applied, and the electrons are forced to ass

referred to as a magnetic wiggler). The unperturbed thetrnsit reion an times
motion of the electrons of the beam in the wiggler is
quite simple. The reason for simplicity is that the This paper presents a study of these inportant ques-
magnetic field on the axis of a wiggler can be approxi- tions. In Sec. Ii, we derive the possible steady states
mately described by a transverse vector potential A,(z), in the homogeneous part of a free electron laser and
depending only on the distance z along the axis. There- study the stability of these states to perturbations of
fore, the canonical transverse momentum P,=yvnv. electron velocities. The transition region is included
- (e/c)A1 of an electron is a constant of motion,' which in the theory in Sec. IIl, where the possible ways of
with the conservation of energy y =(I- (o1/c)

2  operating a free electron laser in different steady states

- (r,/c)2  
1

2 =const, uniquely defines the perpendicular are suggested and illustrated by numerical examples.
and parallel components v, and v, of the velocity of the
electrons in the beam, for a given assignment of A 1(z). II. EQUATIONS OF MOTION AND STABILITY
It can now be easily shown4 that the electrons in a mag- Consider a cold relativistic electron beam moving in
netic wiggler have helical trajectories with the same

period as that of the wiggler. This simple model of the a magnetic field of the form
motion has been exploited in many theoretical studies, B =B(z)e,+ VxA , (1)
describing the operation and parametric behavior of the where
free electron laser.

5

In all experiments, however, there is also an axial A e (2)

guide magnetic field.,7 This, of course, increases and
the number of parameters characterizing the free elec-
tron laser, but at the same time introduces greater 0 =f ko(z')dz'
complexity into the theory. The vector potential is now

dependent on x and y and the perpendicular canonical For A and k. indepenoent of 7, the vector potential (2)
momentum P, is no longer a constant of motion; as a describes the field on the axis of an infinite magnetic
result, in general, no simple analytic solution for the wiggler, where, as is well-Known"0

electron trajectories can be found. Although so called A4[pkoKo(pk0 )+K (Pko)]4
"steady-state" helical trajectories with the same period

as that of the wiggler and constant values of IvJ and where I is the current in the wiggler, p is its radius,
,v,, I are allowed by the system, they cannot be obtained k( = 2r/X 0 , X. is the pitch of the winding of the wiggler,
with arbitrary inlet conditions in the electron beam. and K,, are the modified Bessel functions of the second

Nevertheless, these are the trajectories usually used in kind. By using the more general form (2) for the vector
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potential, we have in mind primarily the possibility of On using normalized velocities u, =vz,'c and "time" r
slow variations of the wiggler parameters p and ko with =ct and defining k(z) =eA/nc and fQ =eB, mc2 , one can
z, and assume that in this case the magnitude .- (z) in write (11) in the form
(2) can be approximated by expression (4), where p and Q
ko correspond to the values of these parameters in the =12 (k0u3 - 1, 3  (12)
nonuniform wiggler at point z. V

Althougn the magnetic field represented by the poten- it2 =-, -(k, - 2)+ 1- 3 , (13)
tial (2) does not satisfy xB=0, it gives a good ap- 7 YdT

proximation of the exact curl-free field on an infinite 1 =-c - (14)
wiggler at small distances r from it. axis. Indeed, as Y 11 -z(14
was shown in Ref. 4, the relative deviation of the trans- First consider the homogeneous case, where 1=
verse component of the field from that described by (2) =const k con this case, Eqs.
is of the order of (ko,). Accordingly, if the beam ra-
dius I is such that (kl)2'<< 1, the actual transverse field (12)-(14) have a particular solution

can be well represented by Eq. (2). The axial compon- u0 =0, u3o = const,

ent of the field of a wiggler near the axis growsA as and
k0 r; it can be neglected, however, in the presence of

a strong axial guide field. We will also limit ourselves k 4 u/y
to low current beams so that the influence of the self- t'20 =k0U -0 /'0 '

space charge on the beam can be neglected. We thus
require that the transverse electrostatic field be much
smaller than v,,B.lc = vko.4,'c, or, assuming axial sym- i/,2 = 1 - 12 - (16)
metry of the beam, W2 r<< 2ekoAcV,/mc, where w, is the

defines the values of U,, and u,,. The question arises as
plasma frequency. If, for example, r=0.3 cm, B=500 3

G. and v,, t-c, the maximum current density allowed by to how this steady-state solution can be achieved. One

the model will be approximately 250 A//cm'. The small can answer this question only by considering the transi-

signal gain in a free electron laser at these conditions, tion region of the wiggler, where and ko may depend

however, may be substantial," so that the results of the on z. Here, one would expect that for initial conditions
in the beam uq =u2 =0, when the vector potential grows

present work could be important in current experiments. sw 1 b
slowly enough with z, the velocities u and u 3 would

We now consider the momentum equation for the elec- gradually approach their steady-state values u, and
trons of the beam ;e, ar.d at the same time , remains zero. It can be

d e shown, however, that, in general, this cannot be the
(v) =--v xB , (5) case. In fact, one gets from (13) that if ul(z) B0,

where . d

y=[-l _ ()Cz)]/2 (6)- =3

Let and therefore u2 = /,/, which, on using (12), requires

e,(z) =-e.sint +ecos6, that f2(z)_0. Thus, in the presence of an axial magnetic

e,(z) =-ecosO - e,sin¢P, (7) field and for the initial conditions on u considered here,
ul cannot remain zero in the transition region. The

e,(z) = e,. maximum that can be expected is that the component u,

Then, the cononical model vector potential is in the transition region remains small in comparison
with it and u t. When this is the case, and, in addition,

A =A(z)e2, (8) u, remains small as the beam propagates in the homo-

and geneous part of the wiggler we define the beam to be

dA stable and now proceed to the study of this special kind
B=iB(z)e 3 --- e, - k 0 Ae 2 . (9) of stab~i'ty.

On expressing the velocity v in terms of the orthogonal First, consider the homogeneous region of the device

vectors e,. e,, and e3 and using and in this region let

t dedt =k0 t' e2;dt-- = -k0& e1 , (10) zu1(r)=w1(i), ?,(r) = qo0 1(r), 3(r) = uo+ 1C(T) , (18)

where U20 and u30 are given by (15) and (16), and u,(T
one can rewrite (5) as are small perturbations to the steady-state solution.

d" =Yk .2 e - Then, on linearizing Eqs. (12)-(14) one gets
Y dt t "3k ("-2 B+ kovA) k = aI'2 + bw, (19)

.__/\ve / (11)

Y , = - 4k0,v3 +. e + V3 A), k2' =-a , , (20)

dA kF3 CW1, (21)
Ydt- tc °v u z " where
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7 a =ko'30 - 7k !m (22) U3 0
Y V'o 1.0

k_ "4 u 0.9-
b=k a k0o- _ - , (23)Y' U 3 0 0 .8 -V4
c ak-bciy. (24) 0.1

Equation (19) then gives . ,-rb = ak, bk, 3 -( -b~ (25) 0.4 -_

Thus, the necessary condition for the stability of the 0.3
electron beam is 0.2

a2  bC >0, (26) .1 1'lcr

Fi.1b) If on ctinues to inces 12 iuaini

or 0.0 .2 2.4 3.6 4.8 6.0 (ramd cm )
F"F -F3 , (27) FIG. 2. The real positive branches of u3 0 vs the cyclotron

kooU.) frequency 0/, characterizing the guide magnetic fie~d.

Further study of the stability problem must involve a

knowlewhichf U1o5and k0 =1Le5708 combinandqs. (15) an

knowlege f u3) electron beam. In the presence of a weak axial magne-(16) thee reultstic field, there exist two additional solutions for t(30 ad-
1- _ 

- (  1 (28) jacent to the resonance velocity u, = f/koy, as shown in

\'} (u3 - t/ak3) 2 =on Fig. 2(b). If one continues to increase t, a situation is

This equation can be rewritten in the form reached, where again there remain only two real solu-
tions for it,, [Figs. l(c), (d)]. The diagram, where all

F=F, - F, =0, (29) possible real positive branches of it,, are presented as

where a function of n, is given in Fig. 2 for a sample case in
which y=1.587, ko=1.5708 cm - ' , and 4, =0.3873.

F, = 1 _----y2 (30) Let us now find the frequency Q.,r at which the roots 2
-230 and 3 on Fig. 2 become complex. This transition cor-

and responds to the point A on the figure. One can find P,,r
by observing that the function F in Eq. (29) ias only one

F2 =1+ (u, - Pk)
2  (31) bounded maximum at the point :, such that FP(.i ) =0,

or
Assuming (4o/y) 2 

< 1 - 1/9? for y large enough, the func-
tions F, and F have the general form shown in Fig. 1 = (32)
for various values of 12. It can be seen from Fig. 1(a) ako(32)

that for 12 =0, there are two solutions for u30, corres- where
ponding to different directions of propagation of the ( 113 (33)

1 -\ _ 1/y2/ ( 3

a: a It is now clear that when F has four real roots, they
(a) (b) are contained in the following intervals: [-l,0], [0,u1 ,(,

F, [u 7 ,u], [u,+1]. On the ends of these intervals the

function F changes its sign, which makes it easy to find
the four roots numerically. It is also clear that the

S2 1 2roots in the last two intervals become complex, when
1 F(uz') =0. Simple algebra then leads to the following ex-

pression for Sler:

-1 0 1 U30 -1 0 U3, 1u0 nt =koya 3 /1 2 
(1 (34)

(j(Considering our sample case shown in Fig. 2, Eq. (34)
gives the value 2 cr =G.763 rad cm.

We now return to the question of stability. It is clear

2 that inequality (27) (which is the necessary condition for

----' F 7 -.-..-..-----.-...K---the stability) is satisfied for branch 4 in Fig. 2, since,
according to (15), u20 is negative on this branch. Simple

J I ± - . L .analysis also shows that branch 2 is stable, since the
-1 0 U3 , u; 1 U., -1 0 U2 , 1 I0 left-hand side of (27) on this branch reaches its maxi-

FIG. 1. Schematic of the functions F and F2, defining various mum value of 1 only at 2 =2 cr; branch 3, in contrast,
possible steady-state solutions for u 0. is always unstable.
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III. TRANSITION REGION =wilo 0, can be expressed as

The inequality (27) is a necessary condition for sta- W(r) g() sin[€(r)-0(r')]dr" (46)
bility of the electron beam in the homogeneous part of A 1/2(,) A 1/2(T - (
free electron laser. This condition becomes sufficient Thu
if the electron beam enters the homogeneous region with s, if the vector potential = grows slowly in the tran-
small enough component ui in its velocity. We now pro- one ethe electron 1ea to et s m genou sceed to the study of the transition region, where as will oeexpects the electron beam to enter the homogeneous

ceedto he tud ofthetrasitin rgio, wereas ill part of the wiggler with a small magnitude of t, which
be shown, special experimental steps must be taken in pr ofit wgr th asllat of the which
order to get a stable electron beam, corresponding to is sufiien r slity f teb hif the inequality (27) is satisfied.
various branches on the diagram on Fig. 2. Let us as-
sume that the vector potential I in the transition region In such an adiabatic case, one can also find the tra-
is a slowly growing function of z. Experimentally, this jectories of the electrons passing the transition region.
would be the case, for example, if one gradually de- Expressing the radius vector r of the electrons in the
creases the radius p of the wiggler, or increases the beam in terms of the unit vectors e,, e., and e3 [see
pitch length A0 = 21r/k, at the end of the device as can be Eq. (7)], one has
seen from Eq. (4). Following the ideas used in the pre-
vious section, one can find approximate solutions of rre+r 2e2 +ze 3 , (47)
(12)-(14) by using expansions (18), where u20 and u3o which on differentiation with respect to r gives
are now functions of z and correspond to the components (f - + (, +k~u~r)e 2 + ie 3  (48)
of the velocity in the homogeneous case with param-
eters such as those at the point z in the transition re- and therefore the trajectories are described by
gion. Then, similar to (19)-(21) one has =u +k U3 r2  r2 =U 2 - kOU3r1 . (49)

It', == 2 +bw, (35) This system of equations can be solved in the following

a 2 =- azw +fu3, (36) way: Let

k 3 = cw 1 -fU 20 , (37) R=r,+ir2 , U=u +"iu2. (50)

where a, b, and c are given by (22)-(24) and Then, on multiplying the second equation in (49) by i and

f =1 d4 (38) adding it to the first equation, one gets

y dz kA=U-ikouR. (51)

Taking the time derivative of Eq. (35) and assuming that If one splits R into two parts
the coefficients a and b are slowly varying functions of
z, one gets the following equation R =Ro +R1, (52)

i= ak, + bt 3 + WI bW + - ak2 + bk3 where

=- (a' - bc)w, +f (au3 - bu2), (39) iR 0 = U/kou3 , (53)

or, on using (22)-(24) and R, is assumed to be small, then on linearization in
Eq. (51),

|lb =-Mw 1 +g, (40) A, -o- ikou3R,. (54)

where The solution of this equation for R, is given by
2==

z - b (41)
And 

foRkor') exp(-iJ0[z(r)]- p[z(r')]})dr', (55)and

g = A. (42) where 4 is defined by (3). Thus, if the velocities u1,
u2 1 and u3 are slowly varying functions in the transition

Assuming that A is a slowly varying function of T one region, R, remains small along the trajectories and

can approximate the solution of the homogeneous equa- R -R, or

tion ut (z)r,(z) Re(R o)  (56)
4 2t= - W , (4 3 ) k (z )u ' (Z ) '

by the WKB solution r(z)-Im(R, ) - '( ) << , (57)

w 1(r) = p-'12[C cos(r) +C. sin(r), (44)

where and therefore the electrons in this case are moving on
helical orbits with adiabatically changing radius r,, and

U= f (r') dr'. (45) the pitch period as that of the wiggler.

Thus, we have shown that, in principle, one can ob-
Then, it can be easily shown, using the method of varia- tain a stable electron beam in a free electron laser if
tion of constants in (44), that the solution of the inhomo- the variations of the parameters of the wiggler in the
geneous equation (40), with the initial conditions w, 10 transition region are slow enough. This conclusion,
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U3 0 ' (a) Ui a= 0.74 rad/cm

!0.9A

0.6 0.9

0.4- 3
0.2- 0 - - - - - - - - -

0.01 I I I 2°---

0.0 0.2 0.4 0.6 2

U3 0  2 (b) 0.'
0.8 0

0.60 -10 -. 1 20 30 z(cm)

0.4 4' F-0.2
0.2 E
0.0 I I 1-'I FIG. 4. The z dependence of various components of the elec,-

0.0 0.2 0.4 0.6 tron velocities for Q0= 0.74 rad/cm.

U30.6 G 4 H (C) the only possible real branch of u3, is branch 4 (see Fig.

0.6 - 2). This situation is illustrated in Fig. 3(c). The beam

0.4 i follows a continuous path GH in the transition region in

0.2- this case and remains stable.0.0
0.0 0 0.4 I In addition to these qualitative considerations, we il-

0.0 0.2 0.4 0.6 lustrate the creation of the instability in the beam in

FIG. 3. The real positive branches of u30 vs 4. (a) 0 Figs. 4 and 5, where the numerical solutions of Eqs.
= 0.6 rad/cm; (b) 0= 1.0 rad/cm; (c) n=4.0 rad/cm. (12)-(14) for u, are presented for our sample case for

two values of Q2 =0.74 and 0.77 rad/ cm (recall that Q.:,
=0.763 rad/cm). We assumed in these calculations the

hwv and one has to check whether all the assumptions, following z dependence of the radius p of the wiggler

used in the derivation of this solution, are correct. One winding in the transition region:

of these assumptions was the slowness of variation of P0 , z 3> 0;
the coeffitients a and b in (35) as the beam propagates P = (58)
through the transition region. Let us show now that, in Po + (Z' zo) , Z O,

general, this is not guaranteed even if I varies slowly, where po=2.5cm and zo=8cm. The sudden transition
The reason is that the real solutions for uzo and u 30 , to the unstable behavior when one goes from Fig. 4 to
which are used in the definitions of a and b, do not al- F
ways behave continuously. We demonstrate such a pos- Fig. 5, where all the uprs change rapidly (U even be

sibility in Fig. 3. In this figure, one can see the dia- comes negative on the parts of the trajectory) is ob-

grams of the possible real positive solutions for u, ob- vious.

tained in a fashion similar to the diagram in Fig. 2, but Thus, in conclusion, if the vector potential 4 varies

for constant values of n2 and varying 4. Our sample case
parameters vr = 1.587 and k. = 1.5708 were again used in
these graphs. As mentioned previously, the variation (a) u31

of 4 with constant value of k. can be experimentally ob-

tained by varying the radius of the wiggler winding in "

the transition region, holding the pitch length X, =27r/k0 , 0.4

constant. In Figs. 3(a,b), we show two cases with the 0.2

values of n2 higher and lower than the critical value ti2 r -0 -0 10 20 Z Cm)
in the homogeneous region [f2, is defined by Eq. (34), -o.4'

and in our sample case is equal to 0.763 rad/cm]. For
S1< n,, as increases in the transition region, one -o.6

follows the path AB in Fig. 3(a) and passes continuously -o.s

to the homogeneous region corresponding to the point B (b) ul f =0.77 rad/cm

on the diagram (at this point t = 40). The beam is stable o.8
in this case. In contrast, if n2 is larger than Slc,, one 06
arrives in the transition region at the point D [see Fig. 0.4

3(b)], where the branches 2 and 3 of uo become complex .2 L
and the homogeneous region can be only reached on the .10o - 20

diagram by the discontinuous path DEF. The jump DE -0.2 z (cm)

in u3o leads to the fast variation on the right-hand side -0.4

of Eq. (12), which cannot remain small anymore, and -0.6

U, grows in amplitude, leading to the instability of the -o.

beam. For sufficiently large values of 12, one can again
return to the stable regime. In fact, if it, = Q -1k, > 1, FIG. 5. The z dependence of , and u3 for 01 - 0.77 rad/cm.
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slowly in the transition region, one can get a stable ui

electron beam for a< tcr, and as the parameters of the o.6-

wiggler vary adiabatically, the beam follows branch 0.7-

2 of the possible solutions for u. on Fig. 2. One can 0.6-0.5- U
also have a stable situation for large axial magnetic o.4-

fields, when branch 4 remains the only possible one for 0.3-

operation. One has to remember, however, that the 0.2- ( --, -

necessary condition for the last possibility is that in -10 o.1_ _0 20 30

the transition region u3r =f/koy >1. This condition can _ - v z (cm)

easily be satisfied when the growth of 4 in the transition -

region is due to the variation of the radius p of the wig- -0.3a

gler, when k0 =const. If in contrast, p=const and k. is -0.4-

increasing as one approaches the end of the wiggler, -0.5

larger values of the axial magnetic field are required in -. 2-

order to operate the device on branch 4. -o. -(2)

Let us finally consider the question of whether it is FIG. 7. The z dependence of the electron velocities in oper-
possible with the initial conditions on the beam assumed atingon branch4 with varying guide magnetic field. 0

here (namely, udjo =u 2 1 =0) to get a stable electron = 4 rad/cm, 0- 0.77 rad/cm.

beam at a larger region of branch 4, especially for
Us _ 1. As mentioned before, the necessary condition
(27) for stability is always satisfied on this branch, quency was assumed to have the form

which makes it more attractive. The perpendicular $21, z < 2L,

component of the velocity on branch 4 can also become C2 = )2/ L2 +n (59)
very large, which is again very important for possible i fZ2 )e' (- L ., z >2L (

electromagnetic wave amplification in the z direction, where S2 =4 rad/cm, f22 =0.77 rad/cm, and L =4 cm. It

can be seen from Fig. 7 that the beam remains stable
The experimental scheme, which allows one to oper- and corresponds to branch 4 with negative and larger

ate a free electron laser on branch 4 is shown in Fig. 6. values of u2,, than in Fig. 4, which corresponds to branch

We are exploiting the stability of the beam for large 2.
values of n [as demonstrated in Fig. 3(c)] and are ap-

plying a strong axial magnetic field in the transition re- IV. CONCLUSIONS
gion of the wiggler. Then, after passing this region the
electrons will enter the homogeneous part of the wig- (i) In operating a free electron laser with an axial

gler, being on the upper part of branch 4 in Fig. 2. Now magnetic field, different steady-state regimes of the

in the homogeneous region, where 4 = 4, = const, one can helical motion of the electrons in the homogeneous part

gradually reduce the axial magnetic field. The beam of the wiggler must be considered.

will then follow the continuous branch 4 and one can (ii) The necessary condition for the stability of these

easily reach region n - f2,,, which was unstable with the steady-state regimes is given by the inequality (27).
constant axial magnetic field. We demonstrate this

possibility in Fig. 7, where the solutions of Eqs. (12)- (iii) The transition region of a free electron laser

(14) are shown for exactly the same final Q2 and g. as in plays an important role in determining the sufficient

the unstable case in Fig. 5. The same variation (58) conditions for stability and in achieving the different

for p was used in the computations. The cyclotron fre- modes of operation of a free electron laser for a given
set of parameters of the homogeneous part of the de-
vice.

(iv) The following two models have been analyzed for
operating a free electron laser in different steady-state
regimes:- I

(a) The first is characterized by a constant axial mag-

A B J. C netic field and gradual increase in the vector potential
I I in the transition region. The stability of this scheme is

limited by a critical value of the axial field given by

, Eq. (34). The value of the perpendicular component of
S Ia2 the velocity is also limited in this steady-state regime.

~ - co (b) The second setup uses a strong axial magnetic field
_____ _ fin the transition region. The field is then adiabatically

Z decreased in the homogeneous part of the wiggler. This

FIG. 6. Possible configuration of the pump and guide fields for regime is always stable and can operate w:.h any value

operating on branch 4 of the steady-state regimes. A-tran- of the axial magnetic field in the homogeneous region.

sition region for J; B-transition region for n; C-homogenous The only limitation is imposed by the increasing radius

part of the device, of the helical trajectories of the electrons in the beam
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Theory of the free-electron laser in combined helical pump and axial guide fields
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The linearized theory of a free-electron-laser amplifier consisting of a relativistic electron beam transported along
the axis of a helical wiggler in the presence of an axial guide field is solved exactly. With suitable re-identification of
parameters, the theory also applies to the case where the wiggler is replaced by a circularly polarized subluminous

radio-frequency pump. The dispersion relation is derived and numerical examples of solutions are presented. These
indicate (a that the use of an axial field permits operation of a laser of given high frequency and undulatory
transvere velocity of the unperturbed electron beam at lower values of the pump field, (b) that the gain can be
enhanced by approaching the condition of resonance between the effective frequency of the pump and the cyclotron
frequency, and (c) that the breadth in frequency of the region corresponding to spatially exponentially growing
operation can be much extended.

1. INTRODUCTION 8N
WV-) = 0(1)at

The theory of a free-electron laser (FEL), con- and the momentum equation
sisting of a relativistic electron beam transported
along the axis of a helical pump magnetic field, (a . () e + (2)
has been given by Bernstein and Hirshfield.1 Their +t "  c
analysis was valid for arbitrary pump strength but
weak rf fields, since it involved linearization in

the amplitudes of the high-frequency quantities. y = (1- v 2 /c') - ' 2 (3)
Here we present the extension of that work to the
case where, in addition, there is an axial magnetic use (3) t expessr in t of , th rul

fiel, cnvetionllypreent or eamcollmaton. uses (3) to express r in terms of , there results
field, conv'entionally present for beam collimation,. h nryeuto

It is also shown that with a suitable reinterpreta-

tion of parameters, the same theory applies when (a ) E4)
the magnetostatic pump is replaced by a circularly\ at
polarized subluminous rf pump. The axial field is Let B be a constant. It is convenient to introduce
shown to yield the additional benefits of permitting the electromagnetic potential A and $ via
the use of weaker pumps, providing enhanced gaini

and yielding broader domains of spacial instability. B =E,+ 7 x ;, 5)
This is discussed in detail in Sec. VI.

The work proceeds as follows. The general - a
mathematical description is developed in Sec. IT at (6)

where the continuity and momentum equations de-
scribing the relativistic beam, and those govern- Then with fQ =eB/mnc one can write (2) in the form

ing the electromagnetic fields are presented. / (\ )
Section III describes the properties of a helical at + )
pump magnetostatic field, and Sec. IV those of a
circularly polarized subluminous rf pump. The - + ; x (r X A)+B x

linearized equations governing the high-frequency at

fields are derived in Sec. V. Section VI is devoted
to a brief discussion of the relation of this work to =lfx +(e) cV4+- +LA VA-().) (7)

its predecessors, to a description of the numerical

examples worked out, and conclusions concerning or on rearranging terms

the effects of the axial field.

( a+ ; ) ); eA '

II. GENERAL MATHEMATICAL DESCRIPTION
= Sj;X [C4 -(VA)(8)

Consider a cold relativistic electron beam de-

scribed by the continuity equation It follows from the Maxwell equations

23 816 0 1981 The American Physical Society
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for the associated magnetic field is, on choosing

C7 X =4, , (9) the coordinate system so that A, =0 and -ko,,

V.=4 , (10) B=-VX = B,+B(ecOSkoz +Z, sinkoz). (21)

on employing (5) and (6), that
The nonconstant part of (21) can be written as the

Val - C - ) c -(L V. , (1) curl of the vector potential

3A A =-(B o/ko)(_(1coskoz +;., sinkz). (22)
Expression (22), valid only near the axis, is the

Thus if we adopt the canonical model of FEL the- form conventionally taken for the magnetostatic
ory, viz. pump field. A corresponding solution for the ve-

locity and density can be obtained from (1) and (8)
=A.(z,t) i.+A,(zt)-, ,(13) by introducing the basis vectors

t= (z, t) (14) =-sinkoz + ;, coskoz, (23)

(note that the vector potential is written in the e= - coskoz - , sinko , (24)
Coulomb gauge) and assume that the only charged

particles present are electrons, whence Z =-Ne e3 =e+ (25)
and J=-Nei, then (11) and (12) yield when on writing

a2~~ a2  ( vjrte\ " (15) A=A +A 2e 2 +A3 A (26)

it follows that

4-.e. (16) 8 =SA \. +IA(

I1l. MAGNETOSTATIC PUMP &A
Consider the case of a free-electron laser in +az %  .e (27)

which the pump magnetostatic field is generated Thus (1) and (8) imply
by helical windings and the self-fields of the elec-
tron beam are negligible. Then in cylindrical co- + a N a (
ordinates p,0,z the vacuum magnetic scalar po- a a z (

tential X will be helically invariant, viz. (a vA\( e~)k,

X fX(p,9-k
z )  (17) (at + ; - m c e) . m c 2 9)

' (29)

where21/kis the pitch, and will satisfy Laplace's --- ) +kov(v ) eA,)=i'r

Teugeineral s(autt: of) l (8 (30)

\at 8z l *

The general solution of (18), regular at p0, on
separation of variables is readily shown to be =- -y -( -1 - v 2 Z - k\v(4A + kvIA/

\mc) Z 'az a 10 2)

X f -Bz+ fX .(mkop) cosjm(0 - koz)+X.J, (31)
"& (19) Now on combining (22) and (25) one can write

where the x, and ),,, are constants determined by =(MC/e) 2 , (32)

the details of the helical windings. Recall that the where 40 is a dimensionless constant. It is then
Bessel function readily seen that if also 4o =0, corresponding to

E0 =-Vo =0, then a solution is given by

Q0 , (20) Zue + iti, (33)
-oN o = const , (34)

Thus if a is the radius of the windings and p<< 2v/ wa , = c (3)where z*= const and w =const, satisfy (27)-(30)
k0, the potential is well approximated by the term provided that consequent to (29)

with m = 1 alone, with 1, approximated by the lead-
ing term in the series. The resulting expression w k0 cu o(kou yo fl)': (35)

O R . ..- +
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where where
=l_(u+'2)/C-3 B ,,,

..(36) A'= _L - (49)0 ko ko e

This solution and its experimental accessibility
has been analyzed in detail by Friedland. 2  Clearly A, is a Lorentz invariant. Also

Y' =d'( - voU/C 2), (50)
IV. RADIO-FREQUENCY PUMP N = '(l (51)

The solution given by (32), (33), and (34) with Id - v?

k o =0 can also be adapted to describe the case of u = V , (52)
a free-electron laser with an electromagnetic 1 - voui c-2

pump which in the laboratory frame has a phase u,/_
velocity less than the speed of light. One then w = v (53)
views the solution as given in the frame where the
pump wave is at rest. Equation (15) then requires, The inverse transformations to (50)-(53) can be

on using (32) and (33), that gotten by interchanging primed and unprimed vari-
ables and changing the sign of t,,.

- c = W/c, (37) The counterpart of (35) is now

which on using (35) can be written w, =C4o(k~u- co)[ o(kou- u)') S . (54)

-_kc = u(ku _ G)-, (38) Equation (38) is carried into

where the plasma frequency, defined using the (.- k 2c2 ) = (k ,u'- w1)[vo(ku,- w,)- ]'
rest mass, is (55)

, = (41N~el/m)Y (39) Equation (55) can be viewed as the dispersion re-

Let vo be the speed of the laboratory frame as lation for the pump electromagnetic field, but it
seen from the wave frame. Distinguish quantities is to be noted that the steady-state theory is not
in the laboratory frame by a prime. Then on Lo- restricted to weak pump fields and a linearized
rentz transformation z, = 5(z - z't), t' "(t - theor.
c2 ), and

w1=-kovo , (40) V. STABILITY ANALYSIS

k,=kof, (41) Let us work in the laboratory frame for the case
of the magnetostatic pump and in the wave frame

where for the case of the radio-frequency pump. The

= (1- _?,,I/C2)
"
,
'
l .(42) stability analysis is then common. Let

Clearly A =-o - Re{(Pnc'/e)[4(z)Ze(z)+ t(z)e2 (z)]e" },

(43) (56)

is the negative of the phase velocity of the wave. '=;o+Re[V(z)e'"I, (57)

Moreover, , =0+Re[(mc2/e)(w/kc)43e'"t], (58)
3=Boi +Bo[ecos(kz' - w't')+, sin(kz' - W't')], = v 0 +Re(re' Jt), (59)

(44) N=No+Re(Ne-'0t). (60)

where Then (29) and (30) yield on linearization

B' = B °  
(45)

E o  = ( /k c) = x *. (46) - k 0V (v°w- ct, ) =  -fW , (61)

Evidently the wave is transverse and circularly

polarized. The associated potentials are dz

=0, (47) Rather than use (31) it is convenient to employ the
linearized version of (4) which yields

X =Ao[-, cos(k;z' -_w't')+Z, sin(kz' - 't')],
+ k-r - '.L-d . (62)

(48) dz/ kc /dz C
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Linearization of (1) gives and

-iw+ d 1+(d)('Va)=O, (63 )  r =(n/o)[(ku - w)l - (kou - /o)] . (80)
\wdzr \d0( The components of 8 are

while linearization of (3) implies a,= I - c(+ k2 )/w2 
- W o12/,

r/yo =(uv 3 +wV0)/C. (64) 0 = =0,

Equations (15) and (16) on using (27) yield 8a2 = - 821 = -2ickk/u?
kz _ -, 2k ,~ z 1 2( 2, )1d - = 2  + C3 (65) a==lc 2 ( +k)/'1  (81)

dzz~l~k~dz+c 2  c

d2 t dt 1 u? t(w1y2)[1 + (U 2/C2 )(k 2 C2 
-?w)(ku -)]

o dz 0, (66) a i 32 =-(2 1,yo)(ku- w)"(w/w)(k- wu/0),

w ___ 
0 I Q

Fec d 2  N0  (67) =1- (w,/yo)(kU - W)2(1 - u2 /c 2 )
-c dz4 = No "The elements of 0 are

Note that Eqs. (60)-(67) are a system of eight lin- Ol= kou- /yo,
ear ordinary differential equations with constant
coefficients for the eight quantities I'V V2 , V3, r , ,= I + )
N1 , 41, 4., and 4. Thus we may seek solutions k=( w

where all these scalars vary with z as ell". If we
write 0, =_i(ku w W  

0kocw ku-,

E =Re[Ta~z~e'"], (68) -,, k, - / '

then it follows from (6) that 0 23. = i(k(u + w)"  
- ) (82)

( (69 =k(U2,U2)) ou.- 0 ( + u ,.2
Equations (60) through (67) then imply U ku - w k '

- w)(y°V1 + c ,) - (kou - 2/y 0)(yV 2 + C 2 + Fl) =23 ("k(u w2) +u kui - Q/

(lo)C2 + (1/yo)rw+ kV,(yw - c o), (70) 1 ku-u

(ku- 0/yo)( oV, + cj,) x(uw w- + k cw ku-w

+ i(ku - w)(YV 2+ c42+ rw) =-(i(/Yo)C , (71) w
~=W ',3 = iao/u ,

r= - w ' (72)
c ku-w 

+

N= - k -V' (73) "="ww ku-f -v UW - cw ku-w
No ku - w' 033 kUu- + W

r=(y/c 2 )(uV,+wV 2), (74) In the limit Q - 0, T vanishes and 1E reduces to _,

[1 - c2(k+ k)/uwt - (2ik0 kc 2/ 2 )g, which apart from notation is the form found by

(75) Bernstein and Hirshfield.'

(2ikokc2/u?)4, + [1 - c2(k?+ k 2)/], VI. THE DISPERSION RELATION AND NUMERICAL

= -(214/U)[(V 2 /c) + (w /c)NNO), (76) EXAMPLES

In order that (78) have nontrivial solutions it is
necessary that the determinant

It is convenient to express r, N1, VI, V2 , and V, DfdetE =0. (83)
in terms of 41, 4, and 4. The result can be rep-

resented in the form This yields an eighth-order polynomial equation
for k. In practice, for the cases of interest 2

(78) << w2 and uc, and two of the roots ate such that

where the dielectric tensor w/k=-c. That is, they propagate in the negative-
z direction counter to the beam and are substanti-

T=_+ ( ( /oZwb (79) ally unaffected by the tenuous beam. The remain-
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ing six roots correspond to waves which propagate Let to be the pump field parameter in the FEL
along the beam. When S1 -0 the two of these which without the guide field. The unperturbed electron
can be associated with cyclotron waves in the limit velocity components are then given by w/c = o
of no helical pump disappear, and one recovers and u/c = [i -1 + (°)/ 1

,o1 2. Therefore, following
the result of Bernstein and Hirshfield.' These fea- Eq. (35), with the guide field
tures will be illustrated later when numerical ex-
amples are discussed. 40= °01- . (84)

Now Eqs. (61)-(67) comprise a tenth-order sys- \ okou

tem of linear ordinary differential equations which This equation demonstrates the intriguing possibil-
require for a unique solution the stipulation of ten ity of reduction of the pump field in an FEL as one
boundary conditions. Since usually there is negli- approaches the cyclotron resonance condition Q2/-.
gible reflection of waves at the output end of an - k0u. Accessibility of the resonance, however,
FEL amplifier of finite length, two conditions are is not guaranteed, as was shown in the recent
the requirement that the amplitudes of the waves study2 of the unperturbed electron beam orbits in
propagating counter to the beam be zero. This an FEL with the guide field. It was demonstrated
requirement can be most easily dealt with via that for given values of , k0, to, and Q the elec-
solving the system of ordinary differential equa- trons can possess more than one steady state.
tions by means of a Laplace transform in z, as For example, Fig. 1 shows u/c versus l1/c for
was done in Ref. 1, instead of the normal mode k =6 cm " , yo =3, and to=0.5. For S2> Q2r it is
analysis. The dispersion relation, of course, de- seen that only one branch exists (branch C). But
termines the poles of the transform in terms of when 0 < 0,, two additional branches (A and B) are
which the inversion can be readily accomplished, allowed. It was also shown that the necessary con-
The resulting solution for 1(z) can be written in dition for orbital stability of the steady-state solu-
terms !(0), assuming that all other first-order tions against small perturbations is given by the
quantities are zero at z =0 and involve linear com- inequality
binations of the six modes corresponding to the f <3
six roots with Rek>0. Since in general these roots ( (85)
are nondegenerate, but differ by amounts of order Ck°°\ U

al much less than -, c, there will be interference Branch C is always stable. since w<0 on this
amongst their contributions to z), which be- branch. On branches and B. i> 0, but. as was
comes evident after a distance of order 2-,ak. shown, only branch A satisfied (85) and thus may
This feature has been examined in detail in Ref. be used in applications. Since the ratio w/u is
1. We will not pursue it further here, other than kept constant in our comparative study, one can
to note that the single particle theory in which one substitute the expression for to found from (35)
examines the second-order energy change in a into (85) and write the stability condition in the
distance z of an electron moving in the zero- and following form:
first-order electromagnetic field, and identifies y k u
this with the gain in energy of the high frequency I+v/uY2 , (86)
field, is valid only for zAk< 1.

We now consider the dispersion relation (83) in valid for branches A and B. In our sample case

an FEL with guide magnetic field. Because of the (yo= 3 , k0 =6 cm", and °=0.5) one has 1l /c
complexity of the dielectric tensor f [see Eq. (79)] =16.18 cm", and, therefore, according to (84),

it is convenient to study the dispersion relation by U/C
comparing two FEL's, identical except that one A
has an axial field while the second does not and
thus is characterized by the dispersion relation 0.8 C
Do= det() =0, the properties of which are well
understood. We make the comparison between the 0.6
two lasers by fixing the parameters of the FEL
without the guide field and adjusting the value of 0.4
the pump field parameter ': in the laser with the
guide field so that the axial velocities u (and there- 0.2
fore also w) in both lasers are identical. This 0.0 , I _ I . IA__._I__II__IA

assures the same Doppler upshift of the frequen- 0 4 8 12 16 20 24 28
cies in the lasers. A similar comparison has been I/C 1cm "1 )
made by Friedland and Hirshfield for the single FIG. 1. Steady-state normalized axial velocity u/c
particle model of FEL.' as a function of normalized axial magnetic field 12/c.
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D 1 0 1 (a)
2.0- 0.03-

0.021.5 0.01 -n 6  n 4  n3  ns n

1.0 1 11.1 0 02 1.0 1.06 .0- 10 11 114

-0.01 n

0.0 [2, "6 "4, , "s
). 0.9 -7r',1. 2 1.3 1.4 n D

0 M0.03 (b)

-1.0 - 0.02

0.01 n6  n.5
0.00 I I I

1.02 1.04 1.06 ,1.08- 1.10 1.1 1.14-2.0 -0.01 /, n

FIG. 2. Dispersion function D' on branch A for the -0.02 I1 i
case v 0=3, ko=6 cm- 1 , and u/c=40 cm - t . The dashed In j
curve represents the FEL without the guide magnetic

field and °= 0.5. The solid curve is for the FEL with
the guide field (f2/c =6.5 cm- t ), where smaller values D
of J0 are used so as to provide the same values of u and 0.03 - (

w as for the dashed curve. 0.02-

0.01 - n6  nS
oon branch A cannot become less than 9 r = 1.562 0.00 1 1.0 1.12 1.14
x I0 "z. -0.01 '/ 1.10

We return now to the study of the dispersion re- -00
lation (83). The form of the dielectric tensor E -0.02
[Eq. (79)] suggests that for values of w. small-
enough, the function D will differ significantly FIG. 3. Graphical representation of the dispersion

from Do only in the regions where (ku - U)2 - (ku function on branch A for the case yo=3, k 0 =6 cm - 1 ,

n,' 0, as a result of the resonance in the Q=0.5, w/cf=50 cm- 1 , and increasing values of the
Wf e emon sntre guide field (the solid curves): (a) 12/c=14 cm "1 , (b)

denominator in 7 [see Eq. (80)]. We demonstrate 2/c =15 cm - 1, (c) f/c =16 cm - 1 . The dashed curves
a typical effect of the axial guide field on the dis- correspond to the FEL without the guide field. Two
persion function D in Fig. 2, where the function pairs of roots of the dispersion relation become com-
D'=D[ku - w))/w,(1 - u2/')]I2/yo (the full line) is plex as the real roots n3 and n4 are squeezed by the

shown versus n = ck/w for branch A in the sample resonances at n5 and ns.
case when w/c=40 cm-', O./c2 =0.5 cm "2 , and
0/c = 6.5 cm "1. In the same figure the dashed line

represents the case with no guide field, and the roots of the dispersion relation are com-
It is well knowni that the unstable regime in an plex. When u continues to increase, n, becomes

FEL without the guide field can be described as a less than n4 , the coupling diminishes, and one
coupling between the transverse electromagnetic again has a stable regime.
modes with the dispersion relation n, 2 = 11 cko/w New effects may occur when the resonances n,, 6

and the electrostatic beam modes characterized approach each other. This situation is shown in
by n3.4=c/u*c ,/r0 u. One can see from Fig. 2 Fig. 3, where the full line represents the disper-

that these four roots are only slightly perturbed sion function on branch A for increasing values of
by the presence of the axial field. There exist, 0. One can see in this example that even for wc
however, two additional roots in the neighborhood = 50 cm" in our sample case (all the modes are
of the resonance points ?1, 6 = c/u * (ckol-fc/ stable in this case if fQ =0) it is possible just by
yuw). If the resonances are widely separated as changing P to squeeze the roots n,.4 by the reso-
in the case of Fig. 2, the onset of the unstable nances n.. so that two pairs of the roots become
mode is roughly the same as without the guide complex. For higher frequencies, when again the
field, namely, as the frequency w increases, the FEL without the guide field is stable (n, < n. ) one
root n, moves to 1, passing the region n 4 < n < n can also get an unstable regime as is demonstrated
(since n. 4 -c/u). The modes couple in this region, in Fig. 4 for w/c= 100 cm-'. Our numerical study

* - , .. .... .. .. . "- , " " .. .... . ....... . .. . - "m ... T_ '' ...-
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D0.4
0.003-

0.002- I 6n 03

0.00 0. 4

1.05 j ' fl4'.09~ .0 11-0.001 n n E

-0.002

I 0.0/*..
(.) 50 60 70 80 90 100

0.003- w/C (cm 1)

0.002 - , n61. /'!\ / FIG. 5. Spacial growth rates Ir(k)versus w/c on

0.001 / nS branch A (solid curves) and C (dashed curves) for vari-

0.000 1.06 I I ous values of f/c: (1) Q /c =0, (2) fl/c =12 cm - , (3)
105 106/ 1.07 ItOy, 1.09 1.10 I.II

-0.001 n S/c=14 cm , (4) fl/c=14.5 cm , (5) fl/c=28 cm"1 ,
-0.002 JI (6) f2/c'23 cm -1, (7) '?/c=21 cm-1. For all the cases

yo=3, ko=6 cm"
1 , and t=0.5.

D0. (C) characteristic of the FEL without the guide field.
0.003- As one approaches the resonance condition 1

=-Youko (further increasing Q2 on branch A or de-

0.001 i / creasing it on branch C) a completely different

0.000 - "6  __n _, _, _ _ 5 type of behavior is observed as is shown in Fig. 6
1.05 1.061 1.07 1. i.09 1.10 1.11 for 12/c = 15.25 cm" on branch A (the full line) and

-0.001F Q n/c=18 cm" on branch C (the dashed line). The
-0.002 unstable region extends over the entire low-fre-

quency range and there are two different unstable
FIG. 4. Graphical representation of the dispersion modes on branch A, as was mentioned previously.

function on branch A for the case yo = 3, k 0 =6 cm -", In addition there exist unstable modes in the high-
O =0.5, /c =100 cm - 1. The solid curves: (a) f/c = 14 frequency region, which was totally stable before.cm- t ; (b) fl/c=15 cm 1 ; (c) /c =16 cm - . The dashed Note that the values of link in this high-frequency

curves correspond to the FEL without the guide field. regime are only weakly dependent on the frequency

itself.
shows that similar behavior is also characteristic Thus, in conclusion, we have demonstrated in
for branch C with the only difference that there is
only one pair of unstable modes in the low and the
high frequency ranges, respectively.

We finally summarize our comparison of the 0.4
FEL's with and without the guide field in Figs. 5
and 6, where the imaginary part of k is shown as 03
a function of w/c for various values of the axial
field in our sample case (y 0= 3 , ko=6 cm", go 0.2
-0.5, w'/c 2 =0.5 cm'). Figure 5 is for 0<12/c ---
<14.5 cm" on branch A (the full lines) and 21 < /c o.1 /

< 28 cm"' on branch C (the dashed lines). The
resonances n,. 6 are relatively wide apart from 0.0 0 20 40 0 0 11000 20 40 60 80 100 120 140
each other and formally the instability in this
range of f2 occurs similarly to the case of the las- wi/C (CM{1 )

er without the guide field. Nevertheles',, the FIG. 6. Spatial growth rates Im(k ) in the sample case

presence of the guide field increases the instability 1-03, 40=6 cm"', go.5) versus ./c in the regime,
on branch A and tends to decrease it on branch c. where the cyclotron modes couple to the beam modesis b(see Figs. 3,4). Branch A (solid curves): f/c =15.25
In addition, the linewidth of the unstable regime is cm "1 . Branch C (dashed curves): l/c=18 cm - 1. The
seen to be significantly increased at lower fre- unstable modes are extended over the low- and high-
quencies on branch A. Together with this, no in- frequency regions. There exist two different growth
stability exists at frequencies higher than those constants in this regime on branch A.

_war

!_ __ - .- -
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our numerical examples that the presence of the =kou 0 .
guide field in an FEL introduces the following de- (iii) The linewidth of the unstable modes can be

sirable features: widely extended to both low- and high-frequency
(i) One can operate the laser with much lower ranges.

magnitudes of the pump field without sacrificing

the undulatory velocity of the electrons. This aL-
lows one to use shorter periods of the wiggler with ACKNOWLEDGMENT

the same currents.
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ORBIT STABILITY IN FREE ELECTRON LASERS
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Helical magnetic wigglers for free electron lasers can pro-
duce non-helical electron trajectories if a uniform axial
guide ca.netic field is imposed. Freidlnnd's necessar-
criterion for the existance of helical orbits is reviewed
and shown to apply for non-relativistic electron energies.
An experiment designed to test this criterion is described
and results are compared with theory.

Key words: free electron laser, magnetic wiggler, elec-
tron orbits.

Introduction

Considerable effort is currently underway in the anal-
ysis (1), design (2), and construction (3) of free elec-
tron lasers for amplification of infrared and far infra-
red radiation. A typical device comprises a good quality
electron beam with energy of 10's of MeV which moves
through a periodic static pump magnetic field., termed a
magnetic wiggler. Radiation propagating along the elec-
tron beam has been shown experimentally (4) to be ampli-
:ied, but the single-pass small-signal gain may be quite
small (7,% was reported for a 520 cm length at 0 = i0.6u
in Ref. 4).

1
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Suggestions for enhancing the small-signal gain by
superposing a uniform axial magnetic upon the wiggler field
have appeared, based upon both single-particle (5,6) and
collective (7) models. The gain enhancement can result
from either increased equilibrium undulatory momentum (5),
or from dynamical resonance between induced electromagnetic
perturbations and the natural oscillations of electrons on
helical orbits (6,7). The increased undulatory momentum
results in a decreased axial momentum, and thus a decreased
Doppler up-shift, i.e. the laser output frequency is shif-
ted to longer wavelength. Gain enhancement may still be
achieved without this wavelength increase by operating the
device with a reduced wiggler field.

A necessary condition for achievement of the gain en-
hancement is that the equilibrium electron orbits in the
wiggler be nearly helical. Without the axial guide field
a helical magnetic wiggler produces a helical orbit; this
result follows from the constancy of canonical angular
momentum. But when the axial guide field is present, the
orbits are generally not helical (8). They can be arranged
to be nearly helical if the entry conditions into the
wiggler are suitably tailored, and if the wiggler and guide
field parameters are in a regime of stability, determined
from the orbit parameters (9).

In this paper, we shall review the basis underlying
the criterion for orbit stability, and shall present
results of an experiment designed to test this criterion
quantitatively.

Orbit Stability

Here we summarize (8) some aspects of the dynamics of
charged particles moving in a static magnetic field given
by

B11(z) B + (0 cosk z + a sink z)B

(I)
SA3Bo - a2B1

Here Bo is the magnitude of the uniform axial guide field,
and B, is the magnitude of the transverse helical field
with pitch Z = 27r/k o . It has been shown (1) that the

2
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charged particle dynamics in this field are described com-
pactly if a coordinate system with basis vectors (&i, &2,
a3) is used, rather than the Cartesian system (ax, &V, ez)"
The coordinate transformations follow from the definitions
of a2 and a3 given in Eq. (1), and by e1 - &2 x &3"

Of course, the field given by Eq. (1) does not satisfy
V x B = 0; it is however a good approximation to the actual
field near the axis of two identical interspersed helical
conductors carrying currents in opposite directions. The
exact field, and the precise nature of the approximations
leading to Eq. (1) will be discussed in a forthcoming
paper (10).

For a particle of charge e, rest mass m, and relativ-
istic-energy factor y, the steady-state solutions of the
equation of motion md(yv)/dt= -ev x B [with B given by
Eq. (1)] are

Ul=0

U2  k (2)koU3Y- /

u3 = (1 - U2 -2 )1/2

where u = v/c, AQ = eBo/m, and = eB6/komc. These compo-
nents correspond to ideal helical trajectories, since u2
and u3 are constants. However, these steady-state values
can only be approached asymptotically, for an actual wig-
gler, because of coupling between the components in the
transition region at the entrance to the wiggler (8), and
because the form given by Eq. (1) is only an approximation.

The solutions given by Eq. (2) are depicted (for y =
10.0, ko = 6.0 cm

-I, and = 1.0) in Fig. 1. For n > Qcr
the equations are single-valued, whilst for Q < Qcr they
are triple-valued. The critical axial guide field cyclo-
tron frequency Qcr is given by

= koc [(y2  1/3 2/33/2

1) - . (3)

3
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Figure 1. Solutions for steady-state axial
momentum u3, as a function of axial magnetic
field, for y = 10, kO = 6 cm-I, and = I.

For smaller values of than that chosen for Fig. 1 the
curves hug more closely the asymptotes u3 = (1 -

and u3 = Q/kocy. Perturbation theory shows (8) that
branches A and C in Fig. 1 are stable, whilst branch B is
unstable. Thus, if a particle enters a wiggler along a
gradually increasing guide field, it would move on a
stable helical orbit along branch A, but at n = Qcr the
orbit would become unstable and thus severely non-helical.
Examples of non-helical orbits are shown in Ref. 8. If

= const and the wiggler field increases gradually, a
similar phenomenon occurs at icr, where

2 - 1/3 2/3 3/2r= [(y2 1)1/ - (C2/ko¢)2/33/ , (4)

cr 1)0C

= (2 1/3 2/3 3/2
or (B/B o)cr -1) (koc/2) - 13 . (5)

4
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Thus for a charged particle moving through a wiggler
in a uniform axial guide field, the orbit can be nearly
helical if < r all along the wiggler but would depart
significantly from helicity if > Zcr"

Experiment

Although electron beams of interest for practical free
electron lasers have relativistic energies, the phenomenon
of helical orbit stability discussed above is not fundamen-
tally a relativistic effect. Thus if the electron energy V
is much less than 511 keV, so that. we approximate y2 - 1
(2eV/mc2), we can write Eq. (5) as

2 2 2)1/3 3/2

(B/Bo [(8 mV/eBoZo) -]

(6)

= [(21.2V
1 /2/B0Z0 ) 2/3 - 3/2

where, in the final expression, V is in volts, B. is in
gauss, and Zo is in cm.

In the experiments to be described, electron beams in
the energy range 4-14 keV were employed; a simple dc low-
current ( 10's of mA) crt electron gun could then be used
to provide the electron beam with a diameter of about 1 mmT
and energy resolution of better than 1%. The helical wig-
gler, to be described more fully below, had a period Zo =
3.6 cm. Thus, from Eq. (6), one sees that the transition
from stable to unstable orbits would occur for very small
wiggler fields indeed if the axial magnetic field were
adjusted to be slightly above 5.89Vl/ gauss, i.e. in the
range between 350 and 700 gauss. The axial magnetic field
was in fact adjusted to dc values between about 300 to 3000
gauss. For a given electron energy V and axial field Bo
the wiggler field amplitude B_. was varied continuously in
time by triggering a spark gap to discharge a capacitor in
series with the wiggler coil. The ensuing RC-decay could
be calibrated to give B-, values as a function of time
during each discharge pulse.

The wiggler coil itself was a bifilar periodic winding
of 3 mm diam conductor would on a 53 mm diam cylinder with
a uniform pitch of 36 mm. The uniform portion was 666 mm

5
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long, i.e. 18.5 periods. At each end the wiggler diameter
tapered outward to 100 mm over a 175 mm length. It was
found that, in addition to provision of these tapered end
portions, careful symmetrizing of the conductors at the end
turns was essential for obtaining stable beam transmission
through the wiggler. Furthermore, flux shunts at the ends.
were required to produce a smooth uniformly tapered transi-
tion into the wiggler. A plot of one component of the
transverse field produced by this wiggler is shown in Fig.
2. (The uniform portion is not shown, as this portion is

Figure 2. Measured transverse magnetic field
at the entrance end of the wiggler.

relatively easy to produce.) This wiggler produced a field
of about 20 gauss/kA, and fields up to 250 gauss have been
routinely produced.

Several beam analyzers were constructed to examine the
properties of the beam within the uniform portion of the
wiggler. For the data to be presented in this paper, a
movable analyzer-was used consisting of two parallel plates
spaced by 9 mm and positioned normal to the axial magnetic
field. The first plate had a 3 mm hole in its center
through which the beam would pass either in the absence of
any wiggler field, or for wiggler field values below the
critical value. In this case, paraxial helical orbits with
diameter less than 3 am were ascertained to be produced, so
that the beam current was collected by the back plate. If
the orbit were to involve excursions of more than 3 mm away
from the axis, current would be collected by the front
plate. When the beam was seen to migrate back and forth

6
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between the two analyzer plates as the wiggler field decayed
with time, this was taken as direct evidence for a strongly
non-helical orbit. Two examples of this migration are
shown in Fig. 3, which is traced from oscillograms of the

Zfz
L"

! ! I I -

0 0.2 0.4 0.6 0.8
TIME (rsec)

Figure 3. Measured currents to front (f)
and back (b) plates of beam analyzer.
Arrows indicate abrupt transitions from
non-helical to helical orbits. Lower
example is for a lower axial field value
than upper example, so that transition
occurs at higher value of wiggler field.

current waveforms to the analyzer plates as a function of
time following firing of the wiggler field spark gap. The
examples are for two different axial field values (lower
for the bottom example than for the top). One sees the
beam gyrate wildly back and forth between the two plates
until a certain time, denoted by the arrows, when the wig-
gler field has decayed to a specific value. The transition
to beam collection by the back plate alone (i.e. paraxial
helical orbits) is seen to be abrupt. Values of wiggler
field were noted at each transition point observed when
axial field and beam energy were varied. These values are

rfe7
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plotted in Fig. 4 as a function of the independent variable

0.
O2

- • *+ V. (keV) -

6

0 10
12 +

14 -

1CF2  16,
[(5.8 /Bo)/ -1

Figure 4. Measured values of B.,_Bo at which

transitions from stable to unstable orbits
were observed, for electron energies between
4-14 keV. Solid line is theoretical pre-

diction.

(5.89V1/2/Bo)2/3 _ 1, as suggested by Eq. (6) for Zo =
3.6 cm. The straight line in Fig. 4 is this same variable
raised to the three-halves power.

Transitions from stable to unstable orbits have been
observed for wiggler fields as low as 2 gauss (lowest
datum in Fig. 4).

Discussion

Magnetic wigglers for free electron laser applications
produce helical electron orbits in the absence of an axial
guide field, but may produce strongly non-helical orbits
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if an axial field is present. One predicted (8) conse-
quence of this phenomenon is an abrupt jump in the orbit
from non-helical to helical once the magnetic wiggler field
streagth falls below a critical value, for fixed axial
field and beam energy. This behavior has been observed ex-
perimentally over a wide range of (non-relativistic) beam
energies and axial field strengths. The data follow an
approximaje tbywe-halves power law in the variable
(ir mV/eB02.)

z
' - 1, as suggested by the theory. The data

fall systematically about 10-20% higher in this variable
than is predicted (corresponding to about a factor-of-two
smaller value of B./Bo than is predicted). An overestimate
in measured electron beam.energies could explain the dis-
crepancy between theory and experiment, but measurement
accuracies are believed sufficient to rule this out. Finite
geometry effects, due either to off-axis departures of the
wiggler field from Eq. (1), or from the finite spatial
resolution of the analyzer, could also contribute to the
apparent discrepancy.

However, the crucial points for users of magnetic wig-
glers in. axial guide magnetic fields are (1), the care re-
quired in wiggler construction (especially at the "first"
tur., and within a gradual transition region) in order to
observe a paraxial helical orbit at all; and (2), the clear
observation of an abrupt transition between stable and un-
stable orbits at (sometimes very low) critical wiggler
fields, much as had been predicted by theory.

It may be that the non-helical orbits will be of util-
ity, although it would be easy to despair in attempting to
formulate a theory for free electron laser operation with
such a complex equilibrium state. These orbits can possess
large amplitude harmonic overtones (10) which should radiate
incoherent radiation at wavelengths a few time shorter than
£o/2y z. FIt may even be possible to observe coherent ampli-
fication on such a spatial overtone of the fundamental
wiggler period; but speculation carries risks ....
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DEGRADATION IN GAIN FOR A FREE ELECTRON LASER
AMPLIFIER DUE TO ELECTRON MOMENTUM SPREAD*

A. Fruchtman and J. L. Hirshfieldt

Center for Plasma Physics
and Racah Institute of Physics

Hebrew University of Jerusalem, Israel

A finite spread in axial momentum for the electron beam in
a free electron laser amplifier is shown to decrease the
small-signal gain. For millimeter and sub-millimeter wave
amplifiers, where exponential growth dominates the gain, it
is shown that the gain is approximately 3 db below that for
a cold beam if the relative momentum spread (Lu/u)1/2 =
(Go/248)1/2(Xo/L), where Go >> 1 is the gain in db for the
cold-beam case, Ao is the magnetic wiggler period, and L is
the amplifier length. Exact numerical examples are given
for representative FEL amplifiers at 35 and 550 GHz.

Key words: free electron laser, amplifier, electron momen-
tum spread.

Most theoretical work concerning amplification of
radiation in free electron lasers (FELs) deals of necessity
with idealized models. One idealization widely employed
involves the neglect of finite momentum spread of the elec-
tron beam. The underlying mechanism for small-signal ampli-
fication involves axial synchronization in propagation ve-
locity between one of the allowed modes of radiation sup-
ported by the beam, and the beam itself. Thus when a spread
in axial beam momentum is present, a mixing-in-phase can be
expected to degrade the amplification which would otherwise
be predicted for a cold beam. Prior workers (1,2) have
taken note of this fact and have provided estimates of the
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effect of momentum spread. This paper presents an exact
analytical model to account for finite momentum spread for
a particular distribution function. When exponential
growth dominates the gain, a simple approximate formula is
derived to estimate the loss in gain due to the momentum
spread. Exact numerical examples are also given for repre-
sentative FEL amplifiers at 35 and 550 GHz.

The basic FEL model adopted here is identical to that
treated by Bernstein and Hirshfield (B-H) (3). That work
gave an exact small-signal solution of the Vlasov-Maxwell
equations for the steady-state evolution of the co-propa-
gating disturbance which grows in space on a relativistic
electron beam passing along the axis of a helical magnetic
wiggler. The B-H theory was derived for a beam of arbitra-
ry momentum distribution in a wiggler of arbitrary strength,
but the solutions presented were for the case of a cold
beam, viz.,

f0 (a,$,u) = No5(a)S(0)6(u-U) . (i)

Here a and 5 are the two transverse components of canonical

angular momentum Ux - eAx/mc2 and Uy - eAy/mc2 , Ax and Ay
are the components of the wiggler's vector potential, U.
and Uy are the transverse components of translational momen-
tum, and U = (y2 - 1)1/2 is the total momentum as related
to the relativistic energy factor . (All momenta are
normalized to mc.) Eq. (1) thus describes a beam which,
prior to entering the wiggler, contains electrons possess-
ing both zero transverse momentum and unique axial momen-
tum U.

As mentioned above, an important source of degraded
amplification is the finite spread of axial momentum on

the electron beam. In the work reported here, we choose
the simplest distribution capable of describing such a
spread, viz.,

SH(U-Ul I H~u-u 2)
fo( 'B'u) = o(ct)6(B) [l U ,] , (2)

where H(x) = 1 for x > 0, H(x) = 0 for x < 0, and AU =

U2 - U1 > 0. This distribution can of course not be real-
ized in nature [in the same sense that the distribution
given by Eq. (1) cannot]. It tay, however, not be a bad
approximation for certain accelerators (except for the

2
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sharp edges); but its utility here is that it enables an
analytic form to be derived for the governing dispersion
relation.

The goal of the present work is identical to that in
B-H, namely to calculate the power gain G (in db) for a
single pass of electromagnetic radiation along a FEL ampli-
fier of length L.

10G /1 0 = a2 (L)a*(L) - 1 . (3)

Here a2 (L) is the dimensionless wave electric field at the
amplifier output, normalized to unity at the input. The
subscript "2" labels one of the three polarizations per-
mitted, namely that which twists in space a quarter-period
behind the wiggler's vector potential. [Eqs. (35) and (37)
in B-H give the other two polarizations.)

The wave amplitude a2 (L) is a superposition of several
co-propagating normal modes, each with its wavenumber kj,
viz.,

a 2 j(L) = jR'(k exp(ikjLQ (4)

The relative mode amplitudes B(kj)/R'(kj) are prescribed
once boundary conditions are set. R(kj) = 0 is the disper-
sion relation for the system which determines the kj(w),
assuming R-1(k) to have simple poles. For the cold beam
case R(kj) is a sixth-order polynomial.

R(x) - [(x-) 2 - 6 2(l+&2 )][(x+X) - b 2][(x-x ) - b2

00+ 262(x2-b)(x2+x2-b2),

where x - kc/w, xO  koc/w; 6 _ (Wp/W)(U/yU3)1/2, b
(I-Uz62)1/2, Z /Uz, Uz = (U

2- 2)1/2, and = - eBo/mc2ko.
The wiggler field strength and wavenumber are Bo and ko .
This equation has been obtained as well by Sprangle (1),
and related forms have been derived and discussed by
Kroll and McMullin (2) and by Kwan, Dawson, and Lin (4).
When 6 << xo << 1, a reduced form of Eq. (5) is a good
approximation, namely

3
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R(x) [(x-i) 2 
- ~2 (1+E2 )Ix- (b+x )I E262 0 (6)

For ko/k < l~ 2 Iy the maximum growth occurs near b+xo
- I' = (62 2x0/2)

1I2. To requisite accuracy the roots are

= , + (6 2 2 x 0/2) 1/3 exp(-7ri/3)

X 2  x 1 (7)

2 2 1/3

These roots are of use in scaling estimates when exponen-
tial gain is dominant. Exact numerical evaluations given
in B-H show, however, that Eq. (7) cannot be used to deter-
mine the entire gain spectrum.

When Eq. (2) is employed as the distribution function
all the momentum-space integrals in the Vlasov formulation
can be expressed analytically. We then find

R(x) =[(x-i 1) (x-"~2 ) -61
2 (1+E2 )][(x+x ) 2 _ b 2 1 (8

X [(x-x ) 2 b b 2 1 + 262()_ x2+ _,
0 0

where
2
W

62=_ 1 Z

W2 1 2 AU

2

bv2= 1 __ - in
W2 AU *Y1 + Uzl)

d2 .1_ ---k
dAU1 - l l U U1

AU (Z1 z2

141< , Y,2= 1 + U1 2 U21 2  U2 &2, and
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When AU/U << 1, ~ - U&U(l + 2 )yU3, 6' 6, and
b' = d = b. Thus the only effect of finite momentum spread
in this limit is in the factor (x - pl)(x - ii) = (x - )2

- (Ai/2)2 in the first bracket in Eq. (8), where
= (p, + p2)/2. The close similarity between Eqs. (8) and

(5), and the simplicity of the former, make determination
of the roots k- a routine matter. This simplicity is not
enjoyed when te momentum spread is described by functions
fo (a,a, U) with non-zero values of afo/aU in a finite
interval, because of wave-particle resonance effects.

As for the cold-beam case, where 6' << xo << 1, Eq.
(8) may be reduced to the approximate form

R(x) = [(x-) (A2_ /2) 2][x - (b'+x)] + 26'2X /2 = 0. (9)

If (A /2)2 << 3( 26'2xo/2)1/3, the roots of Eq. (9) near
b' + xO - W , = 2 x 0/2)1/2 are approximately

+ 61x /2) exp(ii/3)

0

+ l(./2)2(22 Xo/2)l /3e-(-i7/3)

,2  (10)
x 2 = 1I

= 6 - ( ,2 x /2)1/3 - l(Au/2) 2 ( 2 6'2x /2)- /3
X3 o

Thus the spatial growth constant Imx1 is seen to decrease
on account of momentum spread as

l/ ( 2,2Xo/2 ) 1/3 (A 2(,2x2)-2/3 (11)Imx = /2' 3T- (2)0
For pure exponential gain, i.e. excluding the 15.6 db input
coupling loss (see B-H), one has

G = 54.58(L/X)Imx db (12)

where X is the radiation wavelength. From Eq. (11) we can
write G - Go - G 1 , where Go is the gain with no momentum
spread, and G1 is the small decrease due to the spread

5
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Go= 54.58(LIX) ( 6x/2) db . (13)
20

For t = 0.47, X = 4.9, xo = 2.73 x 10
- 2, 62 = 3.80 x 10- 6,

and L/X = 367 (corresponding to a representative FEL ampli-
fier to be discussed below), Eq. (13) gives Go = 39.1 db.
[If one subtracts the 15.6 db input coupling loss, the
actual gain would be 23.5 db (at a wavelength of 560 pm).]
Now

G 54.58 L 21 262 )-1/3db (14)G1  8(14)X 2

Substituting from Eq. (i3) gives the value of Lp which
would bring about a gain loss G,

2 - 3 2(00) = 5.37 x IO-3Go0GI1(X/L)2 (15)

For the example cited above with L/A 367 we find A =

2,16 x 10- 3 for Go = 39.1 db and G1 = 3 db, i.e. for a
factor-of-two decrease in power amplification. This corre-
sponds to a relative momentum spread AU/U
Apij[yU3/U 2 (l + 2)] of 0.041.

Equation (10) also suggests that the frequency at
which gain has its peak value will decrease as momentum

spread increases.

Exact numerical evaluations for small-signal gain G
have been carried out using the full dispersion relation
[Eq. (8)], and with amplitudes [see Eq. (4)] appropriate
to a perfectly matched amplifier output. One example is
for a mm-wave amplifier employing an electron beam typical
of that produced by a small Febetron accelerator, with y
1.78, J = 100 A/cm 2 , Ao = 3.6 cm, C = 0.2, and L = 36 cm.
Gain curves are shown in Fig. 1 for zero momentum spread,
and for finite momentum spreads between 5 and 20%. Gain is
seen to fall by one-half for AU/U = 0.15, and the frequency
for peak gain drops by about 6%. A second example is for a
sub-mm wave amplifier employing a beam typical of the VEBA
accelerator at Naval Research Laboratory, with y = 4.9,
J = 6 kA/cm 2 , o = 2.0 cm, t = 0.47, and L = 20 cm. For
this case the computed gain curves are shown in Fig. 2,
again for zero momentum spread and for spreads between

5 and 20%.
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7- FEL Amplifier Using Febetron Accelerator

,T 1.78
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Figure 2. Gain curves for a FEL using a 2.0 kV
electron beam, for electron momentum spread
between 0 and 20%.
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Comparisons between the exact results (Fig. 2) and the
approximate predictions [Eqs. (12-15)] are instructive.
The peak gain for the cold beam is 17.8 db (i.e. 60x) com-
pared with the approximate value of 23.5 db. The gain
drops by half to 14.8 db (i.e. 30x) for AU/U somewhat
greater than 10%; our approximate result is 4.1%. These
comparisons for the example presented in Fig. I are not
meaningful since the peak gain Go is less than 7.8 db (6x).

Finally, we point out the scaling laws suggested by
Eqs. (12-15), valid for high gain devices where exponential
growth dominates. For negligible momentum spread,

G 1 1j/3LF 2/3X-2/3X-1/3 db

o 0

or equivalently (16)

GO  11/3 (L/o)&2/3 4/3 db

For the gain decrease G, << Go due to finite momentum
spread we have

G1G 0 (AU/U) 2(L/A 0 )2 (db) 2  (17)

Eq. (17) indicates that high gain short amplifiers are less
susceptible to gain degradation due to momentum spread,
than are low gain long amplifiers. This scaling is inde-
pendent of A and y provided Go is high. For G1 = 3 db, the
numerical value for Eq. (17) gives (AU/U)1/2 = (Go/248)1/2
(Ao/L), where (W/U)1/2 is the relative momentum spread for
a factor-of-two decrease in gain. Gain degradation for
long-wiggler FELs operating in the collective regime can
be expected to be serious unless AU/U << 1.

It should be added as a caveat however that momentum
spread may not always degrade gain in a FEL. The geomet-
rical optics theory for a FEL amplifier (5) shows that
gain may arise from a wave-particle resonance, provided
fo(aB,u) is not symmetric in u about its maximum, and
provided afo/au has the requisite sign at the wave's phase
velocity. It is expected that this mechanism would compete
with that discussed in the present paper, and could in fact
allow substantial gain in the presence of tailored momentum
spread.
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